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Abstract Continuous water quality monitoring ins-
truments are used to understand the chemical and
physical behaviors of aquatic environments over time.
However, the data generated from these instruments
are susceptible to inaccuracies due to drift that can
occur between site visits. While there are several
software packages available to correct drift in water
quality data, these packages are often proprietary,
expensive, and/or do not offer the user control over
the data corrections. This paper describes driftR,
an R package that corrects drift in water quality data.
driftR implements either one- or two-point vari-
able data corrections based on the number of standards
used to calibrate the sensor of interest, then linearly
interpolates the correction over the period of interest.
This program gives control to users to correct each
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parameter in a way that is ideal for their unique stu-
dies and offers a free, reproducible method for drift
correction.
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Introduction

In situ water quality monitoring devices are ideal for
assessing aquatic environments because these instru-
ments offer chemical and physical data sets at high-
resolution (sampling intervals to < 1 min). These
devices have been used in a variety of studies to
investigate a wide range of aquatic systems includ-
ing freshwater habitats, marine environments, and
wastewater influents and effluents, to name a few.
For example, flood flow components for rivers have
been determined using continuous specific conduc-
tivity data (Pellerin et al. 2008; Bhaskar and Welty
2015; Hasenmueller et al. 2017). Continuous moni-
toring of chloride has been used to study the short-
and long-term impacts of road de-icing chemicals
on groundwater quality (Robinson and Hasenmueller
2017). Roberts et al. (2007) investigated primary pro-
duction and respiration in headwater streams using
continuous dissolved oxygen (DO) and temperature
measurements. In the Chesapeake Bay, the relation-
ship between nutrient fluxes and algal blooms was
studied using in situ monitoring of chlorophyll a,
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nitrate, ammonium, and phosphate (Glibert et al.
2008). Jimenez-Montealegre et al. (2002) utilized DO,
temperature, and pH to calibrate a dynamic model
investigating nitrogen transformations and fluxes in a
fish pond. There are many other examples of studies
that have relied on in situ water quality data.

Currently, a suite of sensors is available to measure
water quality parameters temperature, conductivity,
turbidity, DO, pH, selected ions, and chlorophyll a,
among others. These monitoring devices are marketed
by numerous companies including Xylem Analytics
(YSI loggers), In-Situ Inc., HORIBA Ltd., and Onset
Computer Corporation (HOBO loggers). The devices
are frequently used by the private sector, academia,
and government agencies (e.g., the United States Geo-
logical Survey (USGS) and National Oceanic and
Atmospheric Administration (NOAA)), which some-
times make their continuous water quality data pub-
licly available for use. An issue with continuous water
quality monitoring devices is that the sensors are sus-
ceptible to inaccuracies due to calibration drift and
fouling, because instruments are often deployed for
weeks at a time between calibrations. Instrument drift
is any incremental error in the measured value of a gi-
ven parameter compared to the true value of that para-
meter. Biofouling occurs when organic films build up
on a sensor’s surface and cause interference with mea-
surements. Delauney et al. (2010) illustrated the effects
of biofouling on drift in fluorescence measurements.

Many government agencies, academics, and pri-
vate sector groups have independently attempted to
develop methods to correct instrument drift. For exam-
ple, the USGS corrects their continuous water quality
monitoring data sets for calibration drift and fouling
using the internally developed program Automated
Data Processing System (ADAPS). This program lin-
early interpolates the drift correction (i.e., the differ-
ence between the actual value of a calibration standard
and the instrument’s reading of that calibration stan-
dard after the end of the monitoring deployment) over
the entire data set (Wagner et al. 2006). While the
ADAPS program effectively adjusts water quality data
for calibration drift and fouling, this program is not
publicly available. There are also proprietary soft-
ware packages that are available to the public for drift
correction, but these programs are expensive (i.e., hun-
dreds to thousands of dollars) and often do not offer
the user control over the correction applied. Moreover,

the full equations implemented in the calibration drift
corrections are not made accessible by either the
USGS or proprietary software developers, making it
impossible for the public to reproduce and/or imple-
ment their own corrections based on standard meth-
ods. Open-source platforms for developing scientific
tools, data platforms, and method documentation are
growing in popularity and availability (Buck 2015;
Lowndes et al. 2017). Well-documented workflows
increase the ease of collaboration and reproducibil-
ity. For example, the Ocean Health Index utilizes
R to code data preparation and model development
as well as Git and GitHub for version control and
collaboration (Lowndes et al. 2017).

There is currently a suite of packages available
in R that pertain to the access and analysis of water
quality data (e.g., waterData (Ryberg and Vec-
chia 2012), dataRetrieval (Hirsch and De Cicco
2015), loadflex (Appling et al. 2015), EGRET
(Hirsch et al. 2010), SWMPr (Beck 2016)); however,
there are currently no R packages to correct water
quality data gathered by continuous in situ monitoring
devices for drift. The ODM Tools Python package
(Horsburgh et al. 2015) does address water quality
data processing, but only allows for one-point drift
corrections. The USGS recommends utilizing a two-
point drift correction when the dynamic range of a
parameter is large (Wagner et al. 2006). Thus, this
paper describes an R package, driftR, that offers the
user control over the drift correction and implements
free and reproducible methods for correcting data.

Design

Sensor drift and fouling can substantially impact the
quality of a data set (Fig. 1). Through analyzing
drift data from 100 deployments of YSI 6600 V2
Multi-Parameter Water Quality Sondes, we found that
sensors drift as much as 206% over deployments of
approximately 2 weeks (see Table 1; data from Robin-
son and Hasenmueller (2017) and unpublished data
sets). The minimum average sensor drift (∼ 1%) was
observed for pH electrode sensors, while highest aver-
age drift (∼ 30%) was observed for ion selective
electrode (ISE) sensors like chloride (Table 1).

We based driftR on the drift corrections used
by the USGS (Wagner et al. 2006) and updated by
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Fig. 1 Continuous (i.e., 5-min data intervals) DO data plot-
ted for a 2-week monitoring period. Uncorrected DO data
(red) were corrected (blue) using a one-point drift correction in
driftR (i.e., the dr correctOne() function). The dashed
lines illustrate ∼ 6% drift in the data by the end of the
monitoring period based on a linear regression of the data

Hasenmueller (2011). In detail, each driftR correc-
tion is based on linear drift over time:

ft =
(

t∑
t

)
(1)

where ft is the correction factor, t is the time inter-
val that has passed since the instrument was originally
deployed, and

∑
t is the total deployment time. This

equation calculates time-weighted correction factors
that are used to adjust for increasing drift over the
monitoring period. In other words, data taken closer to

the initial calibration are corrected less than data taken
toward the end of the monitoring period. These correc-
tion factors are then used in subsequent calculations
for one- or two-point calibrations.

For one-point calibrations, the data correction is
expressed as:

C = m + ft · (
si − sf

)
(2)

Here, C is the drift-corrected water quality parame-
ter value, m is the uncorrected value, si is the value
of the calibration standard, and sf is the value read
by the instrument for the calibration standard after the
total deployment time (i.e.,

∑
t). One-point calibra-

tions are typically used for parameters such as specific
conductivity or DO (see Fig. 1), which either do not
drift significantly between calibrations or for which it
is difficult to create multiple standards for field use
(Wagner et al. 2006).

For two-point calibrations, intermediate calibration
standard correction factors for the low (at ) and high
(bt ) standards must first be calculated:

at = ai + ft · (
ai − af

)
(3a)

bt = bi − ft · (
bi − bf

)
(3b)

where ai and bi are the values of the low and high
calibration standards, respectively, and af and bf

are the values read by the instrument for the low
and high calibration standards, respectively, after the
total deployment time (i.e.,

∑
t). These intermediate

Table 1 Calibration drift for various water quality parameters measured by YSI 6600 V2 Multi-Parameter Water Quality Sonde
instruments over 8 to 21 days of deployment

Calibration drift

Parameter Std. valuea Max (%) Mean (%) Std. dev. (%) nb

One-point calibrations

DO 99% 13.37 2.38 2.16 92

Specific conductivity 1.000 mS/cm 97.00 7.26 18.82 88

Two-point calibrationsc

pH, low standard 7.00 7.14 1.05 1.48 100

pH, high standard 10.00 9.70 1.11 1.85 98

Chloride, low standard 10.00 mg/L 206.20 30.67 34.19 90

Chloride, high standard 1000.00 mg/L 141.60 26.71 27.40 85

aThe values of the calibration standards used for the data presented in the table
bThe number of deployments analyzed for each parameter
cDrift statistics calculated separately for the high and low calibration standards
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Table 2 Functions provided in driftR with descriptions and examples

Function Description and example(s)

dr read() Import and format water quality data

dr read(file = waterData.csv, instrument = ‘‘Sonde’’, defineVar =
TRUE, cleanVar = TRUE, case = ‘‘snake’’)

dr factor() Create correction factors

dr correct(df, corrFactor = corFac, dateVar = Date, timeVar = Time,
keepDateTime = TRUE)

dr correctOne() One-point drift correction

dr correctOne(df, sourceVar = DO, cleanVar = DO corr, calVal = 94,
calStd = 99, factorVar = corFac)

dr correctTwo() Two-point drift correction

dr correctTwo(df, sourceVar = pH, cleanVar = pH corr, calValLow =
7.01, calStdLow = 7, calValHigh = 11.8, calStdHigh = 10, factorVar
= corFac)

dr drop() Drop observations from the data set

dr drop(df, head = 6, tail = 9)

dr drop(df, dateVar = Date, timeVar = Time, from = ‘‘1/12/18’’, to
= ‘‘1/16/18’’)

dr drop(df, exp = turbidity < 0)

dr replace() Replace individual parameters for specified data with NA

dr replace(df, sourceVar = pH, overwrite = TRUE, dateVar = Date,
timeVar = Time, from = ‘‘1/12/18’’, to = ‘‘1/16/18’’)

dr replace(df, sourceVar = pH, cleanVar = pH replaced, overwrite =
FALSE, exp = pH <= 2)

values are then passed into the two-point correction
formula to determine the drift-corrected water quality
parameter value:

C =
(

m − at

bt − at

)
· (bi − ai) + ai (3c)

Two-point calibrations are commonly used for water
quality parameters that experience more drift, such
as ISE sensors for chloride, nitrate, and ammonium.
Two-point calibrations are also important for sensors
that experience a large dynamic range of concentra-
tions in the field (e.g., chloride sensors deployed in
streams during road de-icing applications or DO sen-
sors deployed in lakes during algal blooms) and/or
when it is easy to create multiple standards for field
use (Wagner et al. 2006).

A three-point calibration is also possible, though
this type of drift correction is more complicated.
Three-point data corrections are used when drift is ex-
pected to be non-linear; however, most water quality
sensors are designed by manufacturers to respond lin-
early (Wagner et al. 2006). Thus, this type of calibra-
tion was not incorporated into the driftR package.

Using driftR

The driftR package is available for down-
load from CRAN using the base function
install.packages(). Once driftR has been
installed, the base function library() can be used
to call driftR’s functions. Alternatively, the devel-
opment version of driftR is available via GitHub.
What follows is a brief overview of driftR’s five
core functions, as described in Table 2.

Importing and formatting water quality data

To use driftR, water quality data must be imported
into R in a standard format. The dr read() func-
tion is designed to simultaneously import and cor-
rectly format data files generated by water qua-
lity monitoring instruments including YSI 6600
V2 Multi-Parameter Water Quality Sondes, YSI
EXO2 Multi-Parameter Water Quality Sondes, and
HOBO U24 Fresh Water Conductivity Data Log-
gers. Specifying “Sonde”, “EXO”, or “HOBO” in
the instrument argument of the function denotes
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Fig. 2 A sample data
object, printed in R, with
modified output from a YSI
6600 V2 Multi-Parameter
Sonde. These data can be
previewed from within
driftR by accessing the
sondeRaw object

that the data were collected via each of the pre-
viously mentioned instruments, respectively. This
instrument argument provides special handling
tailored to those instruments, each of which exports
data with formatting that requires modification before
use with statistical software. Additionally, import-
ing data via dr read() can optionally “tidy” vari-
able names by removing spaces and special charac-
ters, making it easier to interact with the variables
in R.

However, driftR can still be used regardless
of the data source as long as those data follow the
standard formatting guidelines outlined here:

1. The date and time variables are stored as character
data,

2. There is only one header row (i.e., no metadata
are stored outside of the primary header), and

3. All of the data to be corrected are stored as
numeric data.

Source data that do not fit the formatting guide-
lines outlined above need to be reformatted using
functions from either base R or the more mod-
ern tidyverse family of packages (Wickham
2017), until they resemble the example shown in
Fig. 2.

Data for experimenting with the driftR package
are available from within the software itself. Calling
sondeRaw after loading the package and assigning
it to an object in the global environment will pro-
vide users with a small sample data set. These data
can be used to illustrate the utility of the remaining
functions. Figure 3 provides a summary of a sample
R session where each of the subsequent functions is
implemented.

Creating correction factors

After the data are imported and formatted cor-
rectly, correction factors need to be generated using
the dr factor() function. This function is an
implementation of Eq. 1. The result of executing
dr factor() is a new variable added to the data
set that contains the appropriate correction factor for
each time observation. The name of this new variable
is defined by the user and will be used in the following
steps of the data correction process.

Correcting the data

Once the incremental correction factors are generated,
individual variables can be drift-corrected using either
the dr correctOne() or dr correctTwo()
functions, which represent one- or two-point calibra-
tion corrections, respectively (see Eq. 2 for one-point
and Eqs. 3a–3c for two-point corrections). Executing
either of these two functions will return a new vari-
able, defined by the user, that contains the corrected
data for the specified water quality parameter.

The driftR program deliberately creates a new
variable during the correction process, rather than
overwriting the uncorrected data, to ensure that each
data set preserves a copy of the uncorrected data for
quality control purposes and to maintain the abil-
ity to repeat the correction if incorrect values were
initially used (e.g., the calibration standard for chlo-
ride was 1000 mg/L, but 100 mg/L was erroneously
entered into a driftR correction function). This step
should be repeated for each water quality parameter
that needs to be corrected. It is important to note that
the dr correctOne() and dr correctTwo()



  445 Page 6 of 10 Environ Monit Assess         (2019) 191:445 

Fig. 3 A sample driftR
session

functions can accept any water quality parameter.
Thus, if a user employs a new water quality sen-
sor, driftR will be able to correct the data it
generates.

Dropping observations

Data observations often need to be removed from a
data set because they are not representative of the in
situ conditions for the aquatic system. For example,
the instrument must be removed from and returned
to the water for calibration. Consequently, the moni-
toring device may record several observations out of
the water that will appear in the data set (see Fig. 4
for a visualization of this phenomenon in the uncor-
rected data as well as the corrected data with errant
observations removed). Some sensors (e.g., ISE sen-
sors) may also need time to equilibrate in the aquatic
environment of interest after the instrument has been
calibrated.

In both cases, these observations can be removed
from the data set using the dr drop() function
(see Fig. 4). The function implements three distinct
methods for dropping observations. The first method
selectively removes observations from the beginning
of a data set (i.e., the “head”) or the end of a data
set (i.e., the “tail”), or both. The second method
drops observations over a specified date range. Dates

in driftR can be specified in either month-day-
year (“MDY”) or year-month-day (“YMD”) format-
ting, making driftR’s use in contexts outside of
the USA seamless. The last method drops observa-
tions expressionally, meaning that if an observation
meets a certain condition, then the observation will be
dropped. Expressions are written using logical opera-
tors such as “>” (greater than), “<” (less than), “>=”
(greater than or equal to), “<=” (less than or equal

Fig. 4 A plot of uncorrected (red) and corrected (blue) chloride
data over a 12-day monitoring period. A total of 30 min of data
were removed from the beginning and end of the data set using
the dr drop() function to account for the instrument being
out of the water as it was deployed or removed for calibration
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Fig. 5 A sample driftR
session using the pipe
operator (%>%)

to), “==” (equal), and “!=” (not equal). Multicon-
ditional expressions can also be written by utilizing
“&” (and) as well as “|” (or) between expressional
terms. For example, to drop observations where the
pH is greater than 10 or the chloride is less than 0, we
would write: dr drop(df, exp = pH > 10 |
chloride < 0).

Replacing observations

In certain cases, individual sensors, rather than the
entire instrument, may record inaccurate data during
a monitoring period. For example, the pH sensor bulb
may be damaged at some point during the deployment,
but the other sensors are unaffected. In these instances,
dr drop() cannot be used because this function
would drop all of the specified data, not solely the
parameter of interest. The function dr replace()
removes the selected observations for a single parame-
ter and replaces them with NA (not available), which R
reads as “empty” or “missing.” There are two methods
for replacing data. The first method is over a specified
date range and the second method is via an expression
as discussed in “Dropping observations.”

Piping functions together

The driftR functions dr factor(),
dr correctOne(), dr correctTwo(),
dr drop(), and dr replace() utilize the argu-
ment .data to tell R in which data frame the data
are stored. This argument allows functions to be
combined with the pipe operator (%>%), which is
a product of the magrittr package (Bache and
Wickham 2014). The advantage of piped functions
is that several scripts can be “piped” together in a
way that makes them more readable, makes the data
wrangling process more streamlined, and allows the
functions to be used in conjunction with other pack-
ages via a common “tidy” data format (Wickham
2014). This behavior is common in the tidyverse
ecosystem of R packages (Wickham 2017), for
example. driftR’s implementation of the pipe
operator means that all of the core functions can be
chained together in a single pipeline (see Fig. 5).
It also means that, for users already familiar with
the tidyverse, driftR integrates seamlessly
into pre-existing data wrangling and visualization
workflows.

Table 3 WRTDS model results for corrected and uncorrected chloride data collected for an urban spring

Flow-normalized concentration (mg/L) Flow-normalized flux (× 104 kg/year)

Year Uncorrected Corrected Difference (%) Uncorrected Corrected Difference (%)

2015 339 257 32.0 11.4 9.3 22.6

2016 167 176 5.1 5.5 6.4 14.1
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Fig. 6 a Chloride sensor
drift over an 8-month period
and b a histogram showing
the frequency of positive
and negative drifts for
various water quality
parameters, including DO,
specific conductivity (SpC),
pH, and chloride (Cl). Note
that blue represents positive
drift and red represents
negative drift in both plots

The impact of drift on water quality models

Models that utilize water quality data are susceptible
to large inaccuracies as a result of instrument drift and
fouling. To illustrate this point, we used the USGS
Weighted Regression on Time Discharge and Sea-
son (WRTDS) model (Hirsch et al. 2010) from the
R package, EGRET, to determine the effects of drift
on chloride flux calculations. We applied the model
to 2 years of continuous corrected and uncorrected
chloride data from an urban spring that experiences
regular applications of winter de-icing salts (data are
from Robinson and Hasenmueller (2017)). Using this
model, we found that the flow-normalized chloride
flux was 21,000 kg larger for the uncorrected com-
pared with the corrected data in 2015 (22.6% dif-
ference) and 9,000 kg smaller for the uncorrected
compared with the corrected data in 2016 (14.1% dif-
ference; Table 3). In this case, the chloride sensor
experienced both positive (i.e., larger than true value)
and negative (i.e., smaller than true value) drifts (see
Fig. 6). That means that over short timescales of weeks
to months, drift can significantly impact model results.
Over long timescales of years to decades, drift errors
in modeled results might be smaller than expected
because positive drift can be offset by negative drift.
Sensors can also consistently drift in one direction,
leading to significant overestimations or underestima-
tions of results on longer timescales. This highlights

the need to drift-correct data to increase model reli-
ability. We also note that the frequency of positive
and negative drifts differed between the low and high
standards used in two-point calibrations (Fig. 6b),
demonstrating the importance of employing multiple
calibration standards for certain parameters.

Using driftR with other R packages

An advantage of implementing continuous water qual-
ity monitoring data correction processes in R is that
data can be corrected and analyzed in a single session.
Though driftR does not offer tools for analysis, it
can be used in conjunction with other R packages to
increase functionality. After drift-correcting data, the
corrected data can be visualized using the package
ggplot2 (Wickham 2009). The ggplot2 package
offers a wide range of useful visualization capabili-
ties including the ability to create faceted or stacked
plots of various water quality parameters. In addi-
tion to data visualization, statistical analyses can be
executed in R. The stats package offers functions
for t tests, ANOVAs, and other descriptive statistics.
Water quality data modeling can also be implemented
in R by numerous packages, including caret for
predictive modeling (Kuhn 2018), neuralnet for
neural network models (Fritsch and Guenther 2016),
randomForest for random forest models (Liaw
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andWiener 2002), and xgboost for gradient boosted
trees (Chen et al. 2018). Indeed, driftR comple-
ments a suite of packages in R by filling the need
for pre-analysis drift correction, which is an important
step in ensuring accurate analyses thereafter. By com-
bining packages, all of the analyses for water quality
research projects can be implemented and documented
in R.

Conclusion

Continuous water quality monitoring instruments are
used in a wide variety of studies and offer high-
resolution chemical and physical data sets for aquatic
systems over time. The sensors on these instruments
are susceptible to errors due to drift and/or fouling
after calibration. This drift can significantly alter a
data set, with some types of sensors experiencing
> 200% drift over monitoring periods of a few weeks.
There are several programs for water quality data drift
correction, but these programs are expensive, not pub-
licly available, and/or lack user control. There is a
need in the scientific community for a free and widely
available software package for drift-correcting water
quality data sets. The driftR package is a novel
R program that uses functions that interpolate a lin-
ear drift correction over time and includes both one-
and two-point variable data corrections. driftR is
free, offers the user control over the drift correction
process, can be used with any continuous water qual-
ity monitoring instrument, accepts any water quality
parameter that needs to be corrected, and uses methods
that are reproducible by other scientists.
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